References

Ahmed, F. R. (1966). N.R.C. Crystallographic Programs for the IBM/360 system. Data Reduction and Structure Factor Least Squares.
Ahmed, F. R. \& Barnes, W. H. (1963). Acta Cryst. 16, 1249.

Auer-Welsbach, H., Nowotny, H. \& Kohl, A. (1958). Mh. Chem., 89,154.
Gambino, R. J. (1967). J. Less-Common Met. 12, 344.
Hamilton, W. C. (1965). Acta Cryst. 18, 502
Iandelli, A. \& Botti, F. (1937). Atti reale Acad. nazl. Lincei, 25, 498.
International Tables for X-ray Crystallographic (1962). Vol. III. pp. 211, 213. Birmingham: Kynoch Press.

Norling, B. K. \& Steinfink, H. (1966). Inorg. Chem. 5, 1488.

Pearson, W. B. (1965). A Handbook of Lattice Spacing and Structures of Metals and Alloys, Vol. 2. Toronto: Pergamon Press.
Rieger, W. \& Parthé, E. (1968). Acta Cryst. B24, 456.
Sato, M., Taylor, J. B. \& Calvert, L. D. (1967). J. Less-Common Met. 12, 419.
Smith, D. K. (1967). Revised program for calculating X-ray powder diffraction patterns. UCRL-50264.
Smith, D. K. (1968). Norelco Reporter, 15, 57.
Swanson, H. E., Morris, M. C., Stinchfield, R. P. \& Evans. E. H. (1962). Nat. Bur. Stand. Monograph 25 Section 1,3.
Vogel, R. \& Klose, H. (1954). Z. Metallk. 45, 633.
Wang, $^{\text {R. \& Steinfink, H. (1967). Inorg. Chem. 6, }}$ 1685.

Wang, R., Steinfink, H. \& Bradley, W. F. (1966). Inorg. Chem. 5, 142.

The Crystal Structure of Anhydrous $\mathbf{~ O O}_{2} \mathbf{F}_{\mathbf{2}}$ *

By M. Atoil and M.J. McDermott \dagger
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

(Recieved 25 September 1969)

Abstract

A neutron powder-diffraction study of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ has been carried out. The structure is trigonal with a unit-layer unit cell with $a=b=4.192 \pm 0.001$ and $c / 3=5.220 \pm 0.003 \AA$ and bonding distances of $\mathrm{U}-\mathrm{O}=$ 1.74 ± 0.02 and $\mathrm{U}-\mathrm{F}=2.429 \pm 0.002 \AA$, confirming essentially a previous X-ray study but with considerably higher accuracy. The powder sample consisted of approximately equal cumulative volumes of four different types of ordered coherent domains, containing individually the layer sequences, $A^{+} B^{+} C^{+}$, $A^{-} B^{-} C^{-}, A^{+} B^{+} A^{+} B^{+} C^{+} B^{+} C^{+} A^{+} C^{+}$and $A^{-} B^{-} A^{-} B^{-} C^{-} B^{-} C^{-} A^{-} C^{-}$, where (+) and (-) refer respectively to the right-side-up and upside-down unit-layer configurations. In each layer sequence, a backward stacking with the opposite-sign unit layer is equally possible in powder diffractometry. All structures belong to the centric trigonal space group $R \overline{3} m\left(D_{3 d}^{5}\right)$. The polymorphic, multidomain structure is not necessarily unique, although an exhaustive search for other probable models was fruitless.

Introduction

Zachariasen (1954) made a pioneering contribution to the structure chemistry of the $5 f$ series of elements by solving the crystal structures of a number of actinide compounds using the X-ray diffraction method. His study included anhydrous uranyl fluoride, $\mathrm{UO}_{2} \mathrm{~F}_{2}$, which was found to exhibit growth layer-stacking faults almost inherently (Zachariasen, 1948). Based on the X-ray powder data, Zachariasen assigned a rhombohedral structure with a cubic close-packing layer sequence to the ideally ordered $\mathrm{UO}_{2} \mathrm{~F}_{2}$ and interpreted the stacking faults by introducing a hexagonal close-packing sequence with a random-walk

[^0]probability. The stacking ordering increases with heat treatment, but the ideally ordered structure is hardly achievable in practice. Since neutron diffraction is more sensitive to the structure parameters of $\mathrm{UO}_{2} \mathrm{~F}_{2}$, we have re-examined the subject using this technique. In this paper the rhombohedral crystal structure is conveniently described with reference to hexagonal axes unless otherwise stated.

Experimental

The anhydrous $\mathrm{UO}_{2} \mathrm{~F}_{2}$ used in this work was prepared by treating UO_{3} with gaseous anhydrous HF at temperatures between 350 and $500^{\circ} \mathrm{C}$ in a nickel reactor (Hoekstra, 1963). Chemical analysis of the samples confirmed the stoichiometry, as indicated by a satisfactory agreement between the observed and calculated weight percentages (the latter values in parentheses), uranium $77 \cdot 1 \pm 0 \cdot 1(77 \cdot 28)$, oxygen $10 \cdot 3 \pm 0 \cdot 1(10 \cdot 39)$
and fluorine $12 \cdot 5 \pm 0 \cdot 1(12 \cdot 34)$. Spectroscopic analysis did not detect any metallic impurity in excess of 200 p.p.m. Thermal decomposition of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ above about $700^{\circ} \mathrm{C}$ (Ferris \& Baird, 1960) precludes the use of various known high-temperature crystal-growth techniques and the absence of appropriate non-aqueous solvents for anhydrous $\mathrm{UO}_{2} \mathrm{~F}_{2}$ inhibits the singlecrystal preparation from solutions. Consequently, only powder specimens have been used in this work. Anhydrous $\mathrm{UO}_{2} \mathrm{~F}_{2}$ is hygroscopic and hence was handled in a dry, inert atmosphere. The average size of the $\mathrm{UO}_{2} \mathrm{~F}_{2}$ crystallites in our powder samples was about several microns in diameter.

The neutron diffraction data were taken at room temperature, using a multipurpose automatic neutron diffractometer (Atoji, 1965) with a wavelength setting of $1.069 \AA$. The sample was encased in a cylindric sample holder (1 cm in diameter) fabricated from a $\mathrm{Ti}-\mathrm{Zr}$ alloy having zero coherent scattering amplitude. A diffraction pattern was also obtained for a mixture of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ and annealed aluminum filings. This mixture was used in order to verify the absence of detectable preferred orientation in the sample containing only $\mathrm{UO}_{2} \mathrm{~F}_{2}$, and also to provide fiducial references for the $\mathrm{UO}_{2} \mathrm{~F}_{2}$ lattice constant determination.

Basic structure

Our neutron diffraction pattern (Fig. 1) appears to be analogous to the X-ray pattern of a well heat-treated sample presented by Zachariasen (1948). Accordingly, the coherent peaks were initially indexed on the basis of the ordered rhombohedral structure proposed in that paper. Hence, the observable reflections should satisfy $-H+K+L=3 n$ (H, K, L and n being integers) in the hexagonal indices. A Gaussian peak analysis reported previously (Atoji \& Williams, 1961) was extensively employed for resolving the overlapped reflections. As in the case of the X-ray work (Zachariasen, 1948) it was found that the peak profiles of the reflections for $H-K=3 n$ and $L=3 n^{\prime}$ were of 'sharp' Gaussian form, in accordance with the angularresolution function of the diffractometer, whereas all other peaks exhibited considerable broadening and some of these 'diffuse' peaks appear to be shifted from their anticipated angles. For this reason, the 'sharp' peaks were used in the lattice constant determination. The measured lattice parameters, based on an analysis of six peaks in each of three separate diffraction patterns, were $a(=b)=4 \cdot 192 \pm 0.001$ and $c=15.66 \pm 0.01 \AA$, the quoted uncertainties here, as throughout this work, being standard deviations. The hexagonal-based unit-cell contains three $\mathrm{UO}_{2} \mathrm{~F}_{2}$ formula units and the calculated density is $6.438 \mathrm{~g} . \mathrm{cm}^{-3}$. The equivalent rhombohedral unit-cell possesses $a_{r}=$ $5.754 \pm 0.003 \AA$ and $\alpha=42^{\circ} 44^{\prime} \pm 2^{\prime}$, and contains one $\mathrm{UO}_{2} \mathrm{~F}_{2}$ unit. Zachariasen (1948) has reported $a=4.206$ ± 0.001 and $c=15.69 \pm 0.01 \AA$, both of which are slightly different from our values. It is likely that the
lattice parameters of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ are sample-dependent. The coherent neutron scattering amplitudes adopted for the intensity calculations were 0.845 for U (Atoji, 1966), 0.58 for O and 0.56 for F , all in $10^{-12} \mathrm{~cm}$ (Bacon, 1962).

The structure description of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ is greatly facilitated by use of the layer unit-cell constituted by a, b and $c / 3$. The least-squares and R-index curve (Atoji, Gschneidner, Duane, Rundle \& Spedding 1958) analyses on the integrated intensities of the sharp reflections led to the layer unit-cell coordinates on the basis of a, b and $c,(000)$ for uranium, $\pm\left(00 z_{0}\right)$ with $z_{0}=0.1110\left(\simeq \frac{1}{9}\right) \pm 0.0015$ for oxygen and $\pm\left(\frac{2}{3}, \frac{1}{3}, z_{F}\right)$ with $z_{\mathrm{F}}= \pm(0.0133 \pm 0.0015)$ for fluorine. In accordance with the sign of z_{F} given above, the atomic arrangements with two alternative fluorine coordinates are hereafter distinguished by the $(+)$ and $(-)$ notations on the structure terminologies. The temperature factor coefficient was found to be $2 B=3 \cdot 1$ $\pm 0 \cdot 3 \AA^{2}$; this value has also been applied to the calculated 'diffuse' peak intensities. Zachariasen (1948) reported values of $z_{0}=0.122$ and $z_{F}=0.039$, both of which are significantly different from our values. Actually, the 'sharp' reflection data are invariant with any choice among $\pm z, \frac{1}{3} \pm z$ and $\frac{2}{3} \pm z$ for a given z value. The foregoing coordinates were chosen by assuming the existence of the strongly bonded uranyl groups in $\mathrm{UO}_{2} \mathrm{~F}_{2}$ and also from the steric-hindrance consideration in the layer stacking. These choices were later substantiated by the intensity analysis on the 'diffuse' reflections.

The $\mathrm{U}-\mathrm{O}$ bonding distance in $\mathrm{UO}_{2} \mathrm{~F}_{2}$ is 1.74 $\pm 0.02 \AA$, which compares favorably with $\mathrm{U}-\mathrm{O}=$ $1.71 \AA$ obtained from infrared frequency analysis of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ (Hoekstra, 1963) and also with $\mathrm{U}-\mathrm{O}=1.71$ $\pm 0.04,1.78 \pm 0.02$ and $1.76 \pm 0.01 \AA$ determined by means of single-crystal neutron diffraction studies of uranyl acetate (Zachariasen \& Plettinger, 1959), $\mathrm{RbUO}_{2}\left(\mathrm{NO}_{3}\right)_{3}$ (Barclay, Sabine \& Taylor 1965), and $\left[\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] 4 \mathrm{H}_{2} \mathrm{O}$ (Taylor \& Mueller, 1965), respectively. The trigonal layer of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ is a slightly puckered plane with the oxygen atoms in a dumb-bell configuration perpendicular to this plane, and the fluorine atoms situated $0 \cdot 21 \pm 0.02 \AA$ alternately above and below the median layer plane formed by the uranium atoms. Each layer is tightly packed through the interatomic distances $\mathrm{U}-6 \mathrm{~F}=2.429 \pm 0.002$, F. . . $3 F^{\prime}=2.456 \pm 0.006, \quad \mathrm{O} \ldots \mathrm{F}=2.86 \pm 0.02 \quad$ and O... $3 \mathrm{~F}^{\prime}=3 \cdot 11 \pm 0.02 \AA$. The $(-)$ layer is an upsidedown configuration of the $(+)$ layer.

Layer stacking

The intensity of a sharp reflection is also invariant with the layer unit-cell translations of $\mp \frac{\mathbf{a}}{3} \pm \frac{\mathbf{b}}{3}(|\mathbf{a}|=a$ and $|\mathbf{b}|=b$), so long as the neighboring laver spacing is equal to $c / 3$. We denote the origin layer as A, the layer
generated by A plus $\left(-\frac{\mathbf{a}}{3}+\frac{\mathbf{b}}{3}\right)$ as B and that by A plus $\left(+\frac{\mathbf{a}}{3}-\frac{\mathbf{b}}{3}\right)$ as C. The sharp-reflection-only analysis can-
not distinguish the layer stackings consisting of any choices or combinations among $A^{+}, B^{+}, C^{+}, A^{-}, B^{-}$ and C^{-}. However, the $A^{+} A^{+}$or $A^{+} A^{-}$type sequence is highly unlikely, since the interlayer oxygen-oxygen distance becomes an unrealistically short $1.74 \AA$. Also, the relatively strong observed intensities of the 'diffuse' peaks readily discount such uncommon layer sequences.

The foregoing ambiguities should be at least partly resolved by the 'diffuse' peak analysis. An important ambiguity nevertheless should always remain because of the multiplet characteristics of the individual powder reflection. A simple example is that powder diffractometry cannot distinguish between the ($A^{+} B^{+} C^{+}$) and ($A^{-} C^{-} B^{-}$) stackings, where the rep-etition-unit sequence is bracketed. In general, a given $(+)$ layer stacking and its backward-sequence of the $(-)$ layers give rise to the same powder intensity at the same scattering angle, regardless of the degree of disordering.

The interlayer separation is due chiefly to the oxygenoxygen approach distance of $\mathrm{O} \cdots 3 \mathrm{O}^{\prime}=2.98 \pm 0.02 \AA$ which approximates closely the van der Waals or ionic contact distance of $2 \cdot 8 \AA$. The interlayer $\mathrm{O} \cdots \mathrm{F}$ distance in the direction of the c axis is 3.27 ± 0.03 or $3.68 \pm 0.03 \AA$ and the next closest $\mathrm{O} \cdots 3 \mathrm{~F}^{\prime}$ distance is 4.41 or $4.07 \AA$, for the $A^{+} B^{+}$or $A^{-} B^{-}$type sequences respectively. In both the $(+)$ and (-) structures, the closest interlayer $\mathrm{F} \cdots \mathrm{F}^{\prime}$ distance is $5.38 \AA$, while the van der Waals or ionic radius of F is around $1 \cdot 35 \AA$. Consequently, the interatomic distance consideration is unable to provide any substantive criterion in discriminating between the $(+)$ and (-) structures.

We have examined systematically practically all conceivable stacking sequences, consisting of all or part of weighted combinations of the six different unit-layers, with or without stacking faults, utilizing the diffraction formalisms developed by a number of authors for the one-dimensional disordering and antiphase-domain structures (Holloway \& Klamkin, 1969 and the references therein; Gevers, 1954; Fujiwara, 1957). Analyses of this sort often lead to ambiguous results. However, all but one model could readily be discarded through the curve fitting to a few observed 'diffuse' peaks at low angles (particularly

Fig. 1. One of the observed diffraction patterns of $\mathrm{UO}_{2} \mathrm{~F}_{2}$ shown in the upper-half section is compared with the calculated diffraction pattern based on the proposed multidomain structure. In the latter pattern, the indices placed above and in the background refer to the $(A B C)$ and $(A B A B C B C A C)$ structures respectively. The calculated heights of the Gaussian peaks are shown by bars and the envelope of the calculated Gaussian peaks is shown by the solid line. No coherent peaks were detectable below 10° in 2θ.
those given in Fig. 2), although our best model described below is not necessarily unique. The model used by Zachariasen (1948), involving the formalism presented in detail in a later paper (Zachariasen, 1967), is incompatible with the data which were obtained with our sample.
Our $\mathrm{UO}_{2} \mathrm{~F}_{2}$ sample consists of the following four different ordered-sequence-group structures;
$\begin{cases}(1 a) & \left(A^{+} B^{+} C^{+}\right), \\ (1 b) & \left(A^{-} C^{-} B^{-}\right),\end{cases}$
$\begin{cases}(2 a) & \left(A^{-} B^{-} C^{-}\right), \\ (2 b) & \left(A^{+} C^{+} B^{+}\right), \\ (3 a) & \left(A^{+} B^{+} A^{+} B^{+} C^{+} B^{+} C^{+} A^{+} C^{+}\right), \\ (3 b) & \left(A^{-} C^{-} A^{-} C^{-} B^{-} C^{-} B^{-} A^{-} B^{-}\right),\end{cases}$
$\left[\begin{array}{ll}(4 a) & \left(A^{-} B^{-} A^{-} B^{-} C^{-} B^{-} C^{-} A^{-} C^{-}\right), \\ (4 b) & \left(A^{+} C^{+} A^{+} C^{+} B^{+} C^{+} B^{+} A^{+} B^{+}\right) .\end{array}\right.$

This particular structure model was deduced as follows: It was found that many features of the observed diffraction pattern could be explained by an antiphase domain structure with a modulation period of $3|\mathbf{c}|$ indicating a nine-layer repetition sequence. Moreover, it was necessary to retain a similar cumulative volume for the three-layer sequence structure in order to account qualitatively for the diffraction intensities. This implied that the sample consisted of structures (1a) and (3a). A superior fit was achieved when the (-)-layer variants of the above, $(2 a)$ and ($4 a$) respectively, were included. As mentioned earlier, the (-)-layer backward stacked version of a particular $(+)$-layer sequence is indistinguishable from the given $(+)$-layer, thus the ' b ' variants cannot be excluded. It should be emphasized that, in contrast with the

Fig.2. The most reliable, observed 'diffuse' peak data (an average of three scannings) are compared with the calculated Gaussian line profiles whose individual and composite values are outlined by fine and heavy solid lines respectively. The indexing convention is the same as that in Fig. 1.

Zachariasen model (1948), all eight probable structures, (1a) through (4b), give rise to the 'sharp' reflections. There exists little or no coherence between any two of the eight different structures in the scattering process. We denote the cumulative volume of the coherent domains occupied by the structure (1a) as $V(1 a)$, for instance. We found that in our powder samples $\quad V(1 a)+V(1 b) \simeq V(2 a)+V(2 b) \simeq V(3 a)+V(3 b)$ $\simeq V(4 a)+V(4 b)$. All of the individual layer sequences, ($1 a$) through ($4 b$), belong to the centric space group, $D_{3 d}^{5}-R \overline{3} m$. The rhombohedral unit-cell dimensions for (3a) through (4b) are $a_{r}=15.84 \pm 0.01 \AA$ and $\alpha=$ $21^{\circ} 22^{\prime} \pm 6^{\prime}$.
For the cumulative structure consisting of (1a), (2a), ($3 a$) and ($4 a$), the coherently diffracted intensity per $\mathrm{UO}_{2} \mathrm{~F}_{2}$ is given by

$$
\begin{aligned}
I_{\mathrm{calc}}=\frac{j \mathrm{~L}}{4}\left[Q_{1}^{2}\left\{\left(F^{+}\right)^{2}+\left(F^{-}\right)^{2}\right\}\right. & \left.+Q_{2}^{2}\left\{\left(F^{+}\right)^{2}+\left(F^{-}\right)^{2}\right\}\right] \\
& \times \exp [-2 B(\sin \theta / \lambda)]^{2} .
\end{aligned}
$$

Here, j is the multiplicity factor; L is the Lorentz factor; the four addition terms represent (1a), (2a), (3a) and (4a) in that order; F^{+}and F^{-}are the layer structure factors per $\mathrm{UO}_{2} \mathrm{~F}_{2}$ for the (+) and (-) layers, respectively:

$$
Q_{1}^{2}=\frac{1}{9}\left\{1+2 \cos 2 \pi\left(\frac{H-K-L}{3}\right)\right\}^{2}
$$

and

$$
\begin{aligned}
& Q_{2}^{2}=\frac{1}{81}\left\{1+2 \cos 2 \pi\left(\begin{array}{c}
H-K \\
3
\end{array}-\begin{array}{c}
L^{\prime} \\
9
\end{array}\right)\right. \\
& +2 \cos 2 \pi \frac{2 L^{\prime}}{9}+2 \cos 2 \pi\binom{H-K-L^{\prime}}{3} \\
& \left.+2 \cos 2 \pi\left(\frac{H-K}{3}+\frac{4 L^{\prime}}{9}\right)\right\}^{2} .
\end{aligned}
$$

The numerical values of Q_{1}^{2} and Q_{2}^{2} are as follows:

$$
Q_{1}^{2}=\left\{\begin{array}{l}
1, \text { for }-H+K+L=3 n, \\
0, \text { otherwise } .
\end{array}\right.
$$

where L and L^{\prime} refer to c and $3 c$, respectively. For the cumulative structure composed of ($1 b$), ($2 b$), ($3 b$) and (4b), both H and K as well as the superscripts of both F^{+}and F^{-}should take the opposite signs.
Satisfactory agreements between the observed and calculated values are seen in Figs. 1 and 2, where the scaling for the calculated values is given by $\left[0.25 \times 10^{-2}\right.$ $\left.I_{\text {cale }}\right] / W$. The W is the full-width in $2 \theta^{\circ}$ at half height
of the Gaussian powder line profile. The scatteringangle dependency of the empirical W as determined from the diffraction patterns of various powder specimens is approximated by (with maximum error of $\pm 5 \%$ in average) $W=\left(0.306 t^{2}-0 \cdot 427 t+0 \cdot 333\right)^{1 / 2}$, where $t=\tan \theta / \tan \theta_{m}$ with $\theta_{m}=14 \cdot 83^{\circ}$ representing the Bragg angle of the copper neutron monochromator (Caglioti, Paoletti \& Ricci, 1958).

The 9-layer repetition sequence, $[A B A B C B C A C]$, has also been found in samarium metal (Ellinger \& Zachariasen, 1953; Daane, Rundle, Smith \& Spedding 1954) and in a ternary Laves phase having approximate composition MgCuAl (Komura, 1962). Stacking faults or disorderings in less-heat-treated $\mathrm{UO}_{2} \mathrm{~F}_{2}$ may be most properly interpreted using the method similar to that used in the MgCuAl case.

References

Атол, M. (1965). Nucl. Instr. Methods, 35, 13; Argonne National Laboratory Rept. No. 6920 (1964).
Атол, М. (1966). Acta Cryst. 20, 587.
Atoif, M. \& Williams, D. E. (1961). J. Chem. Phys. 35, 1960.

Atoj, M., Gschneidner, K. Jr, Daane, A. H., Rundle, R. E. \& Spedding, F. H. (1958). J. Amer. Chem. Soc. 80, 1804.

Bacon, G. E. (1962). Neutron Diffraction, 2nd ed. p. 275. Oxford: Clarendon Press.
Barclay, G. A., Sabine, T. M. \& Taylor, J. C. (1965). Acta Cryst. 19, 205.
Caglioti, G., Paoletti, A. \& Ricci, F. P. (1958). Nucl. Inst. Methods, 3, 223.
Dafe, A. H., Rundle, R. E., Smith, H. G. \& Spedding, F. H. (1954). Acta Cryst. 7, 532.

Ellinger, F. H. \& Zachariasen, W. H. (1953). J. Amer. Chem. Soc. 75, 5650.
Ferris, L. M. \& Baird, F. G. (1960). J. Electrochem. Soc. 107, 305.
Fujlwara, K. (1957). J. Phys. Soc. Japan, 12, 7.
Gevers, R. (1954). Acta Cryst. 7, 337.
Hoekstra, H. R. (1963). Inorg. Chem. 2, 492.
Holloway, H. \& Klamkin, M. S. (1969). J. Appl. Phys. 40, 1681.
Komura, Y. (1962). Acta Cryst. 15, 770.
Taylor, J. C. \& Mueller, M. H. (1965). Acta Cryst. 19, 536.
Zachariasen, W. H. (1948). Acta Cryst. 1, 277.
Zachariasen, W. H. (1954). Acta Cryst. 7, 795.
Zachariasen, W. H. (1967). Acta Cryst. 23, 44.
Zachariasen, W. H. \& Plettinger, H. A. (1959). Acta Cryst. 12, 526.

Zur Kristallstruktur des $\mathbf{Z n C l}_{\mathbf{2}} \cdot \mathbf{\frac { 1 } { 2 }} \mathbf{H C l} . \mathbf{H}_{\mathbf{2}} \mathrm{O}$

Von Heinz Follner
Mineralogisch-Kristallographisches Institut der Technischen Universität, 3392 Clausthal-Zellerfeld, Sägemüllerstrasse 4, Deutschland

(Eingegangen am 11. Juli 1969)

Abstract

$\mathrm{ZnCl}_{2} \cdot \frac{1}{2} \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ crystallizes from aqueous solutions containing hydrochloric acid with unit-cell dimensions $a_{0}=9 \cdot 26, b_{0}=22 \cdot 90, c_{0}=8 \cdot 91 \AA$, space group $F d d 2$ with $Z=16$. The structure was solved by direct methods and by Patterson syntheses. By least-squares methods with individual isotropic temperature factors and individual weights the structure was refined to $R_{1}=9 \cdot 7 \%$. Zinc is tetrahedrally coordinated by four chlorine atoms.

Einleitung

Salzsaure Zinkchloridhydrate der Zusammensetzungen $\mathrm{ZnCl}_{2} \cdot \frac{1}{2} \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ und $\mathrm{ZnCl}_{2} . \mathrm{HCl} .2 \mathrm{H}_{2} \mathrm{O}$ sind seit längerem bekannt (Engel, 1886, 1889; Tschelzow, 1887; Weitz \& Stamm, 1929). Im Rahmen der Bearbeitung von Kristallstrukturen der Zinkhalogenidhydrate wurde die Strukturaufklärung des $\mathrm{ZnCl}_{2} \cdot \frac{1}{2} \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ durchgeführt.

Experimentelles

$\mathrm{ZnCl}_{2} \cdot \frac{1}{2} \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ wurde bei Zimmertemperatur aus
einer salzsauren Zinkchloridlösung in Form von rhomboederähnlichen Kristallen erhalten. Aus Precessionaufnahmen ergaben sich folgende Gitterkonstanten:

$$
\begin{aligned}
& a=9,26 \pm 0,05 \AA \\
& b=22,90 \pm 0,12 \\
& c=8,91 \pm 0,05 .
\end{aligned}
$$

Der Zellinhalt beträgt 16 Formeleinheiten. Die Auslöschungen der Reflexe sind charakteristisch für die Raumgruppe Fdd2. Die Röntgeninterferenzen wurden nach dem Weissenberg-equi-inclination-Verfahren mit automatischer Messroutine und monochromatisierter

[^0]: * Work performed under the auspices of the U.S. Atomic Energy Commission.
 \dagger Present address: Imperial Chemical Industries Limited, Petrochemical and Polymer Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire, England.

